<div class> <p> <br/> 王延庚,1962年出生于西安,西北大学数学系教授,主要研究方向为拓扑学及动力系统。联系方式: ygwng@nwu.edu.cn<br/> <br/> 教育情况:<br/> <br/> </strong> 1981年9月考取西北大学数学系基础数学专业本科生,1985年7月获学士学位<br/> <br/> 1985年9月考取西北大学数学系基础数学专业拓扑学方向硕士生,1988年7月获硕士学位</p> <p> 1991年9月考取四川大学数学系基础数学专业拓扑学方向博士生,1994年7月获博士学位<br/> <br/> 工作情况:<br/> </strong><br/> 1988年至1991年在西北大学数学系相继任助教和讲师<br/> <br/> 1994年至1996年在西北大学数学系任讲师<br/> <br/> 1996年至2009在西北大学数学系任副教授<br/> <br/> 2009年至今在西北大学数学系任教授<br/> <br/> 行政和社会工作情况:<br/> </strong><br/> 1996年至2002年任西北大学数学系副主任,主管教学工作<br/> <br/> 1997年至今任《纯粹数学与应用数学》编委<br/> <br/> 2008年至今任美国《数学评论》评论员<br/> <br/> 主讲课程情况:<br/> <br/> </strong> 本科生课程:数学分析,解析几何,泛函分析,实变函数,拓扑学,工程数学<br/> <br/> 硕士生课程:一般拓扑学,代数拓扑学,泛函分析,微分流形,拓扑动力系统<br/> <br/> 重要论文目录:<br/> <br/> 1. G. Wei, Y. Wang, Z. Yang. Methods for Constructing Choquet-Capacity Preserving and Ergodic Systems: Examples. International Journal of Intelligent Technologies and Applied Statistics, 4(2) (2011):201-220<br/> <br/> 2. G. Wei, Y. Wang, Hung T. Nguyen, Donald E. Beken. On the upper semicontinuity of Choquet capacities. International Journal of Approximate Reasoning, 51(2010):429-440.<br/> <br/> 3. G. Wei, Y. Wang, L. Piatkiewicz. A transitive function on two disjoint squares that preserves neither the dimension nor the category. Far East Journal of Dynamical Systems, 11(2009):301-308<br/> <br/> 4. L. Liu, Y. Wang, G. Wei. Topological entropy of continuous functions on topological spaces. Chaos,Solitons & Fractals, 39(2009): 417-427.<br/> <br/> 5. D. Cheng, Y. Wang, G. Wei. The product symbolic dynamical systems. Nonlinear Analysis, 71 (2009) 4758_4768.<br/> <br/> 6. Y. Wang, G. Wei, W. H. Campbell. Sensitive dependence on initial conditions between dynamical systems and their induced hyperspace dynamical systems. Topology and its Applications, 156(4) (2009): 803-811.<br/> <br/> 7. Y. Wang, G. Wei. W. H. Campbell, S.Bourquin. A framework of induced hyperspace dynamical systems equipped with the hit-or-miss topology. Chaos,Solitons & Fractals, 41(2009): 1708-1717.<br/> <br/> 8. G. Wei, Y. Wang. Formulating stochastic convergence of random closed sets on locally compact separable metrizable spaces using metrics of the hit-or-miss topology. International Journal of Intelligent Technology and Applied Statistics 1 (2008): 33-57.<br/> <br/> 9. Y. Wang, G. Wei. Conditions ensuring that hyperspace dynamical systems contain subsystems topologically (semi-)conjugate to symbolic dynamical systems. Chaos, Solitons & Fractals, 36(2008):283–289.<br/> <br/> 10. Y.Wang, G. Wei. Characterizing mixing, weak mixing and transitivity of induced hyperspace dynamical systems. Topology and its Applications, 155(1) (2007): 56-68<br/> <br/> 11. G. Wei, Y.Wang. On metrization of hit-or-miss topology using Alexandroff compactification. International Journal of Approximate Reasoning, 46(1)(2007):47-64.<br/> <br/> 12. Hung T. Nguyen, Y. Wang, G. Wei. On Choquet theorem for random upper semicontinuous functions. International Journal of Approximate Reasoning, 46(1)(2007):3-16.<br/> <br/> 13. Y. Wang, G. Wei. Embedding of topological dynamical systems into symbolic dynamical systems: a necessary and sufficient condition. Reports on Mathematical Physics, 57(2006): 457-462.<br/> <br/> 14. Y. Wang, G. Wei, R. Li. Conditions Ensuring that the Space of k-Lipschitz Maps is Homeomorphic to the Hilbert Cube. International Journal of Applied Mathematics & Statistics, l.1(D03)(2003):1-10.<br/> <br/> 15. Y. Wang. The space of maps from a locally compact space to a Banach space. Acta Math.Sinica(new series). 13(3)(1997):333-336.<br/> <br/> 16. Y. Wang, T. Wang. Characterizing Br spaces, Chinese Annals of Mathematics , 14(3)(1993):302-305.</p> </div>