解:
设不低于80分的为A人,则80分以下的人数是(A-2)/4,及格的就是A+22,不及格的就是A+(A-2)/4-(A+22)=(A-90)/4,而6*(A-90)/4=A+22,则A=314,80分以下的人数是(A-2)/4,也即是78,参赛的总人数314+78=392
2、电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?
解:设一张电影票价x元
(x-3)×(1+1/2)=(1+1/5)x
(1+1/5)x这一步是什么意思,为什么这么做
(x-3){现在电影票的单价}×(1+1/2){假如原来观众总数为整体1,则现在的观众人数为(1+2/1)}
左边算式求出了总收入
(1+1/5)x{其实这个算式应该是:1x*(1+5/1)把原观众人数看成整体1,则原来应收入1x元,而现在增加了原来的五分之一,就应该再*(1+5/1),减缩后得到(1+1/5x)}
如此计算后得到总收入,使方程左右相等
【答案】
观众增加一倍,即原来只有一个人来看,现在是两个人来看。收入增加1/5,即现在两个人的总票价比原来一个人时单人票价多1/5,为15×(1+1/5)=18元
平均每人18/2=9元
比原来降低了15-9=6元
降低了6/15=40%
答:解:15-15×[(1+1/5)÷(1+1/2)
=15-15×[6/5÷3/2]
=15-15×[6/5×2/3]
=15-15×4/5
=15-12
=3(元)
答:一张门票降价是3元。
第一天吃了这堆桃子的七分之一;
第二天吃了余下桃子的六分之一;
第三天吃了余下桃子的五分之一;
第四天吃了余下桃子的四分之一;
第五天吃了余下桃子的三分之一;
第六天吃了余下桃子的二分之一;
这时还剩下12个桃子,那么第一天和第二天猴子所吃桃子的总数是多少个?
【答案】
设桃子总数为x
1/7x乘以6/7x乘以5/6x乘以4/x5乘以3/4x乘以2/3x乘以1/2x=12
1/7x=12
x=84
第一天84X1/7=12
第二天72X1/6=12
12+12=24
【答案】
丙又取其余的一半,结果还剩一个,说明丙取前是1+1=2个
乙取余下的一半多一个,则乙取前是(2+1)*2=6个
甲取其中的一半少一个,则甲取前时(6-1)*2=10个
因此,原来有10个
下面是解题过程:设这袋苹果原来X个,则
甲取走苹果的个数为X/2-1
乙取走苹果的个数为(X-X/2+1)/2+1
丙取走苹果的个数(也是剩余的个数)为:总数-甲取走-乙取走,即
【X-X/2+1-(X-X/2+1)/2-1】/2=1
解方程得X=10
【答案】
乙数是单位“1”,甲数是:
1+1/3=4/3
乙数比甲数少:
1/3÷4/3=1/4
2、有梨和苹果若干个,梨的个数是全体的5/3少17个,苹果的个数是全体的7/4少31个,那么梨和苹果的个数共多少?
【答案】
解:设总数有35X个
那么梨有35X*3/5-17=21X-17个
苹果有35X*4/7-31=20X-31个
20X-31+21X-17=35X
41X-48=35X
6X=48
X=8
所以梨有21×6-17=109个,苹果有20×6-31=89个。
2、3箱苹果重45千克。一箱梨比一箱苹果多5千克,3箱梨重多少千克?
3、甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。甲比乙速度快,甲每小时比乙快多少千米?
4、李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。每支铅笔多少钱?
5、甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。甲车每小时行40千米,乙车每小时行45千米,两地相距多少千米?(交换乘客的时间略去不计)
答案
【1】
想:
由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。再根据椅子的价钱,就可求得一张桌子的价钱。
解:
一把椅子的价钱:
288÷(10-1)=32(元)
一张桌子的价钱:
32×10=320(元)
答:
一张桌子320元,一把椅子32元。
【2】
想:
可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量。
解:
45+5×3
=45+15
=60(千克)
答:
3箱梨重60千克。
【3】
想:
根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇。即可求甲比乙每小时快多少千米。
解:
4×2÷4
=8÷4
=2(千米)
答:
甲每小时比乙快2千米。
【4】
想:
根据两人付同样多的钱买同一种铅笔和李军要了13支,张强要了7支,可知每人应该得(13+7)÷2支,而李军要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱。
解:
0.6÷[13-(13+7)÷2]
=0.6÷[13-20÷2]
=0.6÷3
=0.2(元)
答:
每支铅笔0.2元。
【5】
想:
根据已知两车上午8时从两站出发,下午2点返回原车站,可求出两车所行驶的时间。根据两车的速度和行驶的时间可求两车行驶的总路程。
解:
下午2点是14时。
往返用的时间:14-8=6(时)
两地间路程:(40+45)×6÷2
=85×6÷2
=255(千米)
答:
两地相距255千米。
2.一种商品,今年的成本比去年增加了10分之1,但仍保持原售价,因此,每份利润下降了5分之2,那么,今年这种商品的成本占售价的几分之几?
3.甲乙两车分别从A.B两地出发,相向而行,出发时,甲.乙的速度比是5:4,相遇后,甲的速度减少20%,乙的速度增加20%,这样,当甲到达B地时,乙离A地还有10千米,那么A.B两地相距多少千米?
4.一个圆柱的底面周长减少25%,要使体积增加1/3,现在的高和原来的高度比是多少?
5.某市场运来香蕉、苹果、橘子和梨四种水果其中橘子、苹果共30吨香蕉、橘子和梨共45吨。橘子正好占总数的13分之2。一共运来水果多少吨?
答案
1.答案:甲收8元,乙收2元。
解:“三人将五条鱼平分,客人拿出10元”,可以理解为五条鱼总价值为30元,那么每条鱼价值6元。
又因为“甲钓了三条”,相当于甲吃之前已经出资3*6=18元,“乙钓了两条”,相当于乙吃之前已经出资2*6=12元。
而甲乙两人吃了的价值都是10元,所以甲还可以收回18-10=8元
乙还可以收回12-10=2元
刚好就是客人出的钱。
2.答案22/25
画线段图思考:
把去年原来成本看成20份,利润看成5份,则今年的成本提高1/10,就是22份,利润下降了2/5,今年的利润只有3份。增加的成本2份刚好是下降利润的2份。售价都是25份。所以,今年的成本占售价的22/25。
3.解:原来甲.乙的速度比是5:4
现在的甲:5×(1-20%)=4
现在的乙:4×(1+20%)4.8
甲到B后,乙离A还有:5-4.8=0.2
总路程:10÷0.2×(4+5)=450千米
4.答案为64:27
解:根据“周长减少25%”,可知周长是原来的3/4,那么半径也是原来的3/4,则面积是原来的9/16。
根据“体积增加1/3”,可知体积是原来的4/3。
体积÷底面积=高现在的高是4/3÷9/16=64/27,也就是说现在的高是原来的高的64/27
或者现在的高:原来的高=64/27:1=64:27
5.第二题:答案为65吨
橘子+苹果=30吨
香蕉+橘子+梨=45吨
所以橘子+苹果+香蕉+橘子+梨=75吨
橘子÷(香蕉+苹果+橘子+梨)=2/13
说明:橘子是2份,香蕉+苹果+橘子+梨是13份
橘子+香蕉+苹果+橘子+梨一共是2+13=15
2.甲乙辆车同时从ab两地相对开出,几小时后再距中点40千米处相遇?已知,甲车行完全程要8小时,乙车行完全程要10小时,求ab两地相距多少千米?
3.在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟?
4.慢车车长125米,车速每秒行17米,快车车长140米,车速每秒行22米,慢车在前面行驶,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要多少时间?
5.在300米长的环形跑道上,甲乙两个人同时同向并排起跑,甲平均速度是每秒5米,乙平均速度是每秒4.4米,两人起跑后的第一次相遇在起跑线前几米?
答案
1.解:根据“马跑4步的距离狗跑7步”,可以设马每步长为7x米,则狗每步长为4x米。
根据“狗跑5步的时间马跑3步”,可知同一时间马跑3*7x米=21x米,则狗跑5*4x=20米。
可以得出马与狗的速度比是21x:20x=21:20
根据“现在狗已跑出30米”,可以知道狗与马相差的路程是30米,他们相差的份数是21-20=1,现在求马的21份是多少路程,就是30÷(21-20)×21=630米
2.答案720千米。
由“甲车行完全程要8小时,乙车行完全程要10小时”可知,相遇时甲行了10份,乙行了8份(总路程为18份),两车相差2份。又因为两车在中点40千米处相遇,说明两车的路程差是(40+40)千米。所以算式是(40+40)÷(10-8)×(10+8)=720千米。
3.答案为两人跑一圈各要6分钟和12分钟。
解:600÷12=50,表示哥哥、弟弟的速度差
600÷4=150,表示哥哥、弟弟的速度和
(50+150)÷2=100,表示较快的速度,方法是求和差问题中的较大数
(150-50)/2=50,表示较慢的速度,方法是求和差问题中的较小数
600÷100=6分钟,表示跑的快者用的时间
600/50=12分钟,表示跑得慢者用的时间
4.答案为53秒
算式是(140+125)÷(22-17)=53秒
可以这样理解:“快车从追上慢车的车尾到完全超过慢车”就是快车车尾上的点追及慢车车头的点,因此追及的路程应该为两个车长的和。
5.答案为100米
300÷(5-4.4)=500秒,表示追及时间
5×500=2500米,表示甲追到乙时所行的路程
2500÷300=8圈……100米,表示甲追及总路程为8圈还多100米,就是在原来起跑线的前方100米处相遇。
2.有四种颜色的积木若干,每人可任取1-2件,至少有几个人去取,才能保证有3人能取得完全一样?
3.某盒子内装50只球,其中10只是红色,10只是绿色,10只是黄色,10只是蓝色,其余是白球和黑球,为了确保取出的球中至少包含有7只同色的球,问:最少必须从袋中取出多少只球?
4.地上有四堆石子,石子数分别是1、9、15、31如果每次从其中的三堆同时各取出1个,然后都放入第四堆中,那么,能否经过若干次操作,使得这四堆石子的个数都相同?(如果能请说明具体操作,不能则要说明理由)
答案
1.解:可以把四种不同的颜色看成是4个抽屉,把手套看成是元素,要保证有一副同色的,就是1个抽屉里至少有2只手套,根据抽屉原理,最少要摸出5只手套。这时拿出1副同色的后4个抽屉中还剩3只手套。再根据抽屉原理,只要再摸出2只手套,又能保证有一副手套是同色的,以此类推。
把四种颜色看做4个抽屉,要保证有3副同色的,先考虑保证有1副就要摸出5只手套。这时拿出1副同色的后,4个抽屉中还剩下3只手套。根据抽屉原理,只要再摸出2只手套,又能保证有1副是同色的。以此类推,要保证有3副同色的,共摸出的手套有:5+2+2=9(只)
答:最少要摸出9只手套,才能保证有3副同色的。
2.答案为21
解:每人取1件时有4种不同的取法,每人取2件时,有6种不同的取法.
当有11人时,能保证至少有2人取得完全一样:
当有21人时,才能保证到少有3人取得完全一样.
3.解:需要分情况讨论,因为无法确定其中黑球与白球的个数。
当黑球或白球其中没有大于或等于7个的,那么就是:6*4+10+1=35(个)
如果黑球或白球其中有等于7个的,那么就是:6*5+3+1=34(个)
如果黑球或白球其中有等于8个的,那么就是:6*5+2+1=33
如果黑球或白球其中有等于9个的,那么就是:6*5+1+1=32
4.不可能。
因为总数为1+9+15+31=56
56/4=1414是一个偶数
而原来1、9、15、31都是奇数,取出1个和放入3个也都是奇数,奇数加减若干次奇数后,结果一定还是奇数,不可能得到偶数(14个)。
2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?
3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。乙单独做完这件工作要多少小时?
4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?
5.师徒俩人加工同样多的零件。当师傅完成了1/2时,徒弟完成了120个。当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?
答案
1.解:1/20+1/16=9/80表示甲乙的工作效率
9/80×5=45/80表示5小时后进水量
1-45/80=35/80表示还要的进水量
35/80÷(9/80-1/10)=35表示还要35小时注满
答:5小时后还要35小时就能将水池注满。
2.解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的工效>乙的工效。又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。只有这样才能“两队合作的天数尽可能少”。
设合作时间为x天,则甲独做时间为(16-x)天
1/20*(16-x)+7/100*x=1
x=10
答:甲乙最短合作10天
3.解:由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量(1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。
根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。
所以1-9/10=1/10表示乙做6-4=2小时的工作量。
1/10÷2=1/20表示乙的工作效率。
1÷1/20=20小时表示乙单独完成需要20小时。
答:乙单独完成需要20小时。
4.解:由题意可知1/甲+1/乙+1/甲+1/乙+……+1/甲=1
1/乙+1/甲+1/乙+1/甲+……+1/乙+1/甲×0.5=1(1/甲表示甲的工作效率、
1/乙表示乙的工作效率,最后结束必须如上所示,否则第二种做法就不比第一种多0.5天)
1/甲=1/乙+1/甲×0.5(因为前面的工作量都相等)
得到1/甲=1/乙×2
又因为1/乙=1/17
所以1/甲=2/17,甲等于17÷2=8.5天
5.答案为300个
120÷(4/5÷2)=300个
可以这样想:师傅第一次完成了1/2,第二次也是1/2,两次一共全部完工,那么徒弟第二次后共完成了4/5,可以推算出第一次完成了4/5的一半是2/5,刚好是120个。
推荐关注
-
十点读书
简介
关键词:
猜你喜欢
-
高校人事:潘一山任辽宁大学党委书记
· 1970-01-01 -
中南财经政法大学首台原创大思政课舞台剧《逐光的孩子》“开讲”
· 1970-01-01 -
2025内蒙古自治区药品检验研究院博士后科研工作站招聘公告
-
幼稚,女生考研复试被问喜欢爸爸还是妈妈,回答逗笑导师,已进组
-
2026中国科学院理论物理研究所科研人员招聘若干人公告(北京)
-
2025法律职业资格考试报名时间、报考条件及入口(客观题6月16日起 主观题9月19日起)
-
2023年山东执业医师考试报考网站:https://www.nmec.org.cn/
· 1970-01-01 -
2025南华大学附属第二医院第四批科研助理招聘14人通知(湖南)
-
为防止被学生举报,网传有人写了一份老师上课指南
· 1970-01-01 -
中南财经政法大学2023年普通本科招生章程
· 1970-01-01 -
侯振发任中南财经政法大学党委书记
· 1970-01-01 -
朱方伟任中南财经政法大学校长
· 1970-01-01 -
中南财经政法大学75周年校庆启动
· 1970-01-01 -
2024年辽宁大学面向社会公开招聘工作人员公告(5月20日-5月26日报名)
· 1970-01-01 -
侯振发任中南财经政法大学党委书记
· 1970-01-01















